M9

Energy Planning

Content

- 1. // Introduction
 - 1.1 Motivation for energy planning
 - 1.2 Goals of energy planning
- 2. // Procedures for energy planning
 - 2.1 Urban planning: who are the stakeholders?
 - 2.2 Stages of energy planning
- 3. // Energy planning with GIS
 - 3.1 GIS-based possibilities
 - 3.2 Example

Introduction

1. Introduction

1.1 Motivation for energy planning

Climate change

 Every region in Europe is affected by the impact of climate change, but each region in a different way (e.g. Northern Europe gets warmer, Southern Europe gets more arid).

Limited fossil energies

- About 80-90% of electricity generated by fossil energies (incl. nuclear power).
- Most energy is used in urban areas, for housing, mobility and economy
- Very high current dependency on non-renewable energies and their imports

1. Introduction

1.2 Goals of energy planning

Energy saving and efficiency

Expansion of renewable energy systems

Sustainable energy supply

Rapid implementation of energy transitions

Reduced dependence on fossil energy

Renewable energies as stimulus for local economy and employment

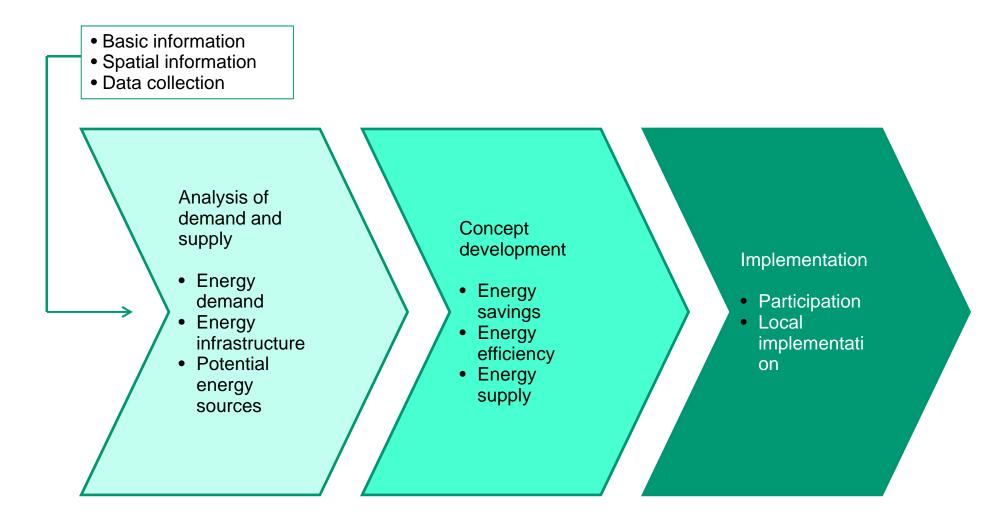
2.1 Urban planning: who are the stakeholders?

Energy planning is a cross sectoral task and involves a variety of different professional capabilities:

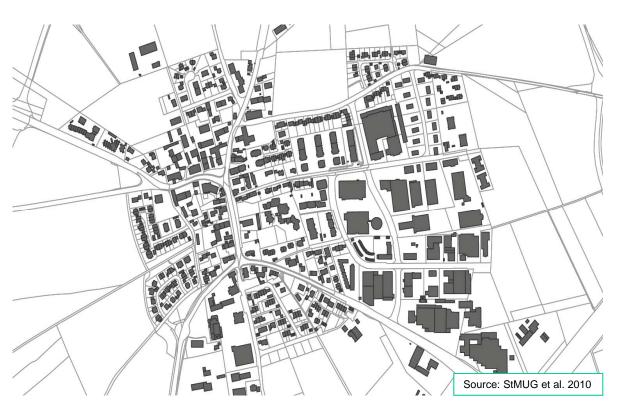
- Energy sector
- Environment issues
- City building and urban planners
- Architecture
- Logistics

Energy planning comprises many elements:

- **Planning**
- Coordination
- Analyzing
- Process management
- Consulting
- Law issues
- Education
- Engineering



2.2 Stages of energy planning



2.2 Stages of energy planning – Basic information

For example information is needed for GIS-based applications

Materials for visualisation: digital maps

Content of digital maps:

- Borders of land parcels
- Buildings (with number)
- Names of streets
- Types of land use
- Water courses and natural structures

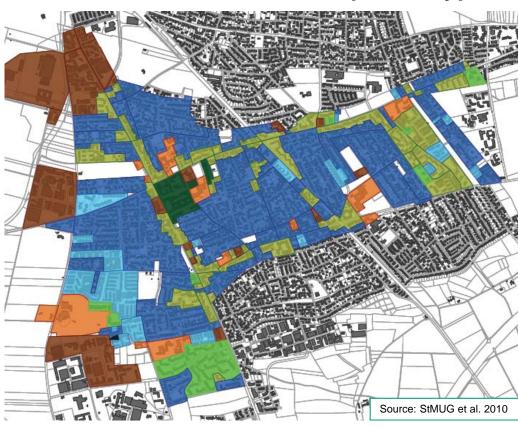
2.2 Stages of energy planning – Basic information

For example information is needed for GIS-based applications

• Materials for visualisation: aerial image

Content of aerial image:

- Waters and natural structures
- Land use
- Housing, infrastructure and agriculture



2.2 Stages of energy planning – Information of space

For example information is needed for GIS-based applications

Materials for visualisation: plan of types of buildings

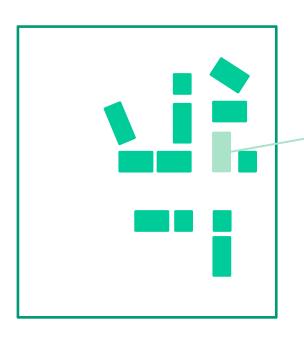
Content of plans:

- Land use for housing
- Structure of buildings
- Density and height

2.2 Stages of energy planning – data collection

There are several possibilities to collect data, either public or private source:

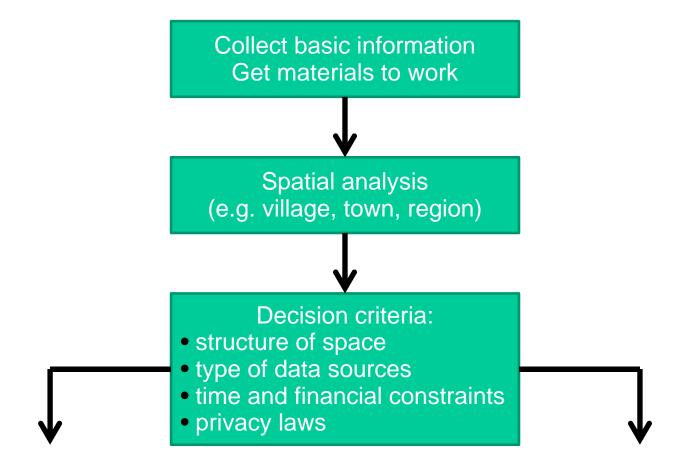
- Local departments of housing, citizens, trade and industry
- Building authority
- General supplier (energy, water)
- Promotion of economy
- Private housebuilding (companies, architects)



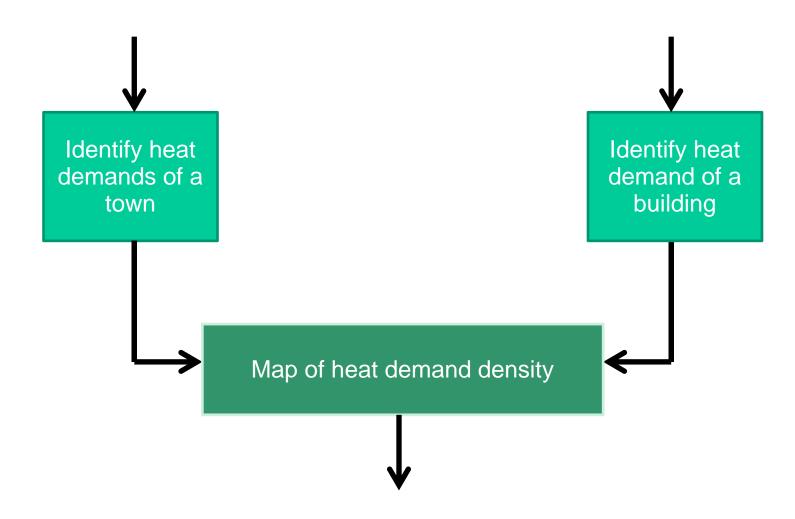
2.2 Stages of energy planning – Collecting data

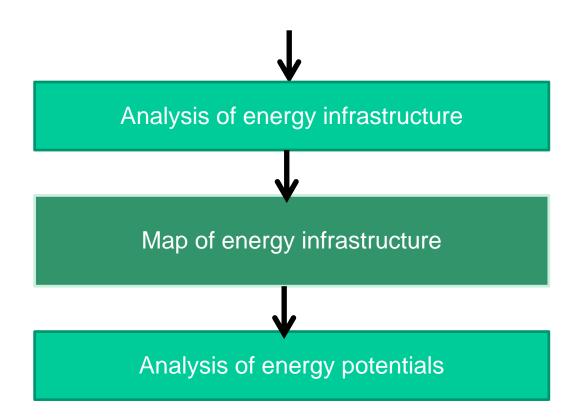
For example information is needed for GIS-based applications

• Data to analyse (e.g. **energy consumption**, energy infrastructure)

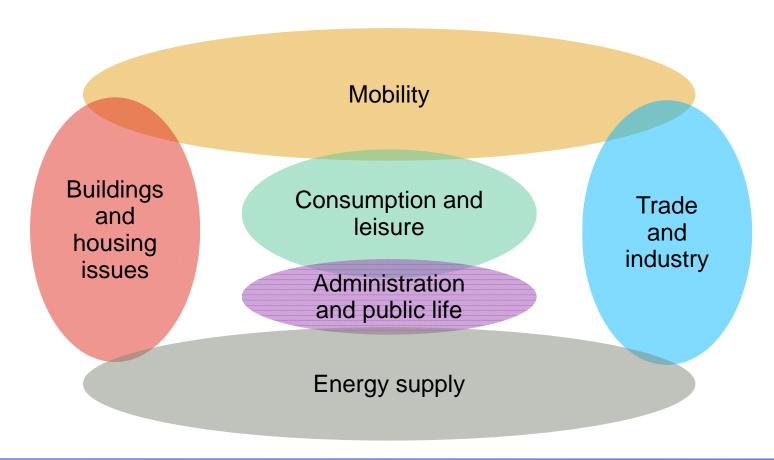


ID	Street	Number	Consumption (kWh/a)
1	Mainstreet	5	45.000
2	Mainstreet	7	50.000
3	Mainstreet	9	30.000
4	Longstreet	2	70.000
5	Longstreet	4	55.000
6	Longstreet	6	45.000


2.2 Stages of energy planning – Step 1: Analysis of stock and potentials


2.2 Stages of energy planning – Step 1: Analysis of stock and potentials

2.2 Stages of energy planning – Step 1: Analysis of stock and potentials



- 2. Procedures for energy planning
- 2.2 Stages of energy planning Step 2: Development of a concept

Energy planning concerns several sectors of a city, which cause most of the carbon dioxide emissions:

2.2 Stages of energy planning – Step 2: Development of a concept

Developing an energy concept includes fields of action and measures (Selection of possibilities)

Buildings and housing (state):

- Regularly consulting
- Remediation of buildings
- Modernization
- Financial support

Buildings and housing (new):

- Criteria for sustainability
- Techniques for low energy demand
- Controlling energy demand

2.2 Stages of energy planning – Step 2: Development of a concept

Developing a energy concept includes fields of action and measures (Selection of possibilities)

Mobility:

- Integrated transport management (e.g. individual, public mobility)
- Cars: intelligent concepts for moving and parking traffic
- Public traffic: connection with individual mobility
- Information service and image campaign

Trade and industry:

- Network sustainable companies
- Self-sufficiency and energy sharing
- Deriving the maximum amount of useful energy output (heat and electricity)

2.2 Stages of energy planning – Step 2: Development of a concept

Developing an energy concept includes fields of action and measures (Selection of possibilities)

Energy supply:

- Efficient supply of public and private space
- Full use of CHP by consulting and connecting stakeholders
- Information campaigns: renewable energies in urban space
- Modernization of infrastructure and techniques
- Efficient utilization of space

2.2 Stages of energy planning – Step 3: Implementation

The concept is still tentative / not legal. It deals with

- Long term concept to reduce energy consumption
- Ensure permanent energy supply while extention of renewable energies

Therefore, the concept has to become obligatory:

- Formal (legal) instrument of urban planning
- Contracts with responsible actors, e.g. administration, institutions, companies.
- Participation of citicens, stakeholders
- Planning of objects (buildings)
- Behaviour of the consumers: energy consumtion of the daily use
- → Accepted strategy has to become binding law!

3.1 GIS-based possibilities

What is GIS?

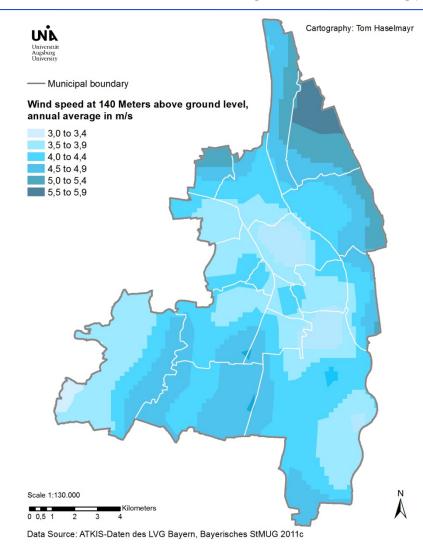
 GIS (geographic information system) is a computer-based system with the necessary hardware, software and data.

What is GIS?

GIS enables the presentation of all sorts of spatial information.

Why GIS in energy planning?

- Specific energy planning issues are assisted by connecting geographical, public or private statistics, spatially and temporally
- For example, GIS can display structures, capacities and locations of renewable energy sources.


How to use GIS (in general)?

- Step 1: Gathering and archiving data
- Step 2: Data transformion and illustration
- Step 3: Spatial analysis and processing information

3.2 Example: Planning of wind energy in Augsburg/Germany

1. Analysis of wind conditions

Quantify avarage wind speed

Influence parameters:

- Density of buildings
- Thermal activities (turbulence)
- Mirco climate advantages and disadvantages (locally)

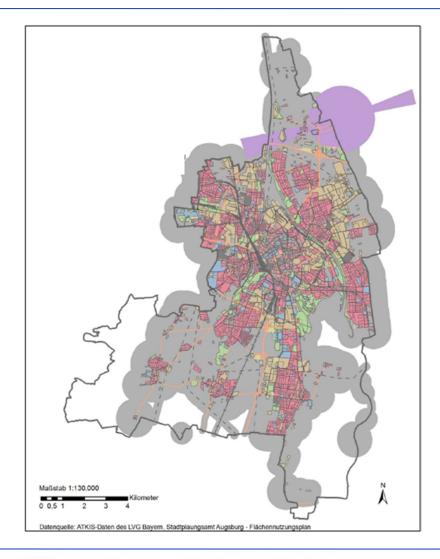
3.2 Example: Planning of wind energy in Augsburg/Germany

2. Definition of exclusion areas:

- Natural reserve
- (Natural) conservation area
- → Prohibition of wind energy

Different land use priorites competing with each other:

- Areas designated for protection of birds
- Wind power plants

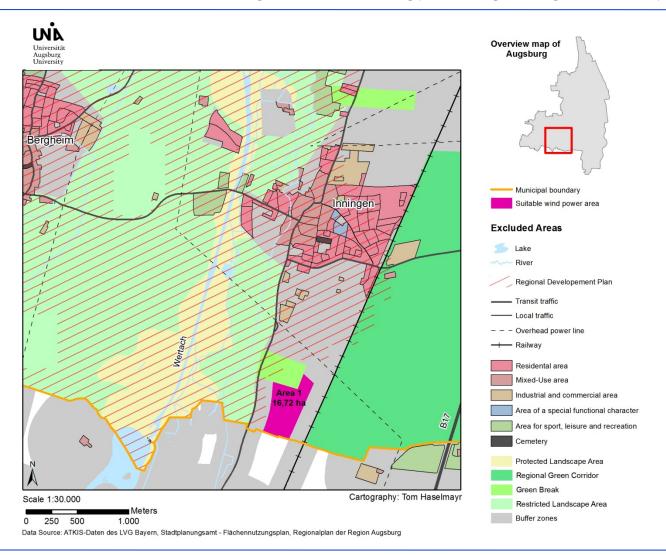

Regional plans designate permission for wind energy exploitation

→ Restricted or preferred area

3.2 Example: Planning of wind energy in Augsburg/Germany

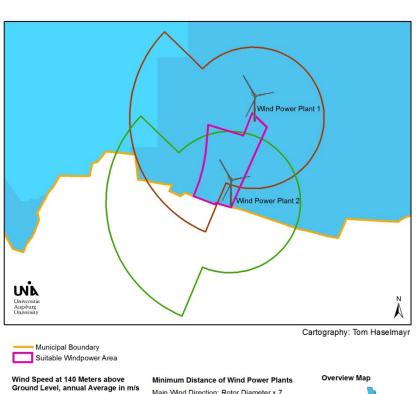
3. Mapping the available space

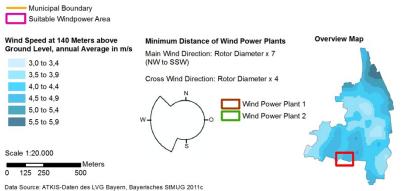
Summary of land use:


Map shows areas where wind energy facilities are forbidden (method of elimination)

- No housing areas
- No industrial areas
- No infrastructure (traffic)
- No natural reserve
- No transition zone

3.2 Example: Planning of wind energy in Augsburg/Germany


4. Calculation of annual energy yield:


- Average wind speed
- Usable space
- Efficiency of wind power plants
- → Potential for wind energy

3.2 Example: Planning of wind energy in Augsburg/Germany

Energy planning:

- Compare usable space and available technology
- Pay attention to legal issues
- → Two wind turbines are realizable

5. Next steps:

- Implementation at municipal level
- Authorization procedure; environmental impact assessment
- Implementation in local (urban) plans
- Set permission for wind energy facilities in binding law

The UP-RES Consortium

Contact institutions for this module: Universität Augsburg

 Spain : SaAS Sabaté associats Arquitectura i Sostenibilitat www.saas.cat

 United Kingdom: BRE Building Research Establishment Ltd. www.bre.co.uk

• Germany:

AGFW - German Association for Heating, Cooling, CHP www.agfw.de

UA - Universität Augsburg www.uni-augsburg.de/en

TUM - Technische Universität München http://portal.mytum.de

Hungary: UD University Debrecen www.unideb.hu/portal/en

